MAC / MAD sizing formulas \& Examples

Four parameters are required to precisely determine the dimension of shock absorbers

- Mass to be decelerated $\mathrm{m}(\mathrm{kg})$
- Impact velocity v (m/s)
- Propelling or driving force F (N)
- Number of impact cycles per hour C (/hr)

Some useful calculation formulas

- Kinetic energy: $\mathrm{E}_{\mathrm{K}}=\mathrm{mv}^{2} / 2$
- Drive energy: $E_{D}=F \times S$
- Free fall velocity: $v=\sqrt{2 g \times h}$
- Pneumatic or hydraulic cylinder driving forces. $\mathrm{F}=0.00785 \mathrm{Pd}^{2}$
- Maximum shock force (approximate).
$\mathrm{Fm}=1.2 \mathrm{E}_{\mathrm{T}} / \mathrm{S}$
- Propelling force generated by electric motors. $F=3000 \mathrm{~kW} / \mathrm{v}$
- Total energy absorbed per hour. $\mathrm{E}_{\mathrm{TC}}=\mathrm{E}_{\mathrm{T}} \times \mathrm{C}$

Symbols	Unit	Description
μ		Coefficient of friction
α	(rad)	Angle of incline
θ	(rad)	Side load angle
ω	(rad/s)	Angular velocity
A	(m)	Width
B	(m)	Thickness
C	(/hr)	Impact cycles per hour
d	(mm)	Cylinder bore diameter
ED	(Nm)	Drive energy per cycle
E_{K}	(Nm)	Kinetic energy per cycle
E_{T}	(Nm)	Total energy per cycle
$\mathrm{E}_{\text {TC }}$	(Nm)	Total energy per hour
F	(N)	Propelling force
F_{m}	(N)	Maximum shock force
g	$\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Acceleration due to gravity ($9.81 \mathrm{~m} / \mathrm{s}$)
h	(m)	Height
HM		Arresting torque factor for motors (normally 2.5)
kW	(kW)	Electric motor power
m	(kg)	Mass to be decelerated
$\mathrm{M}_{\text {e }}$	(kg)	Effective mass
P	(bar)	Operation pressure
R	(m)	Radius
$\mathrm{R}_{\text {s }}$	(m)	Shock absorber mounting distance from rotation center
S	(m)	Stroke
T	(Nm)	Driving torque
t	(s)	Deceleration time
V	(m/s)	Velocity of impact mass
V_{s}	(m/s)	Impact velocity at shock absorber

Example 1. Horizontal impact
Application data
$\mathrm{m}=300 \mathrm{~kg}$
$v=1.0 \mathrm{~m} / \mathrm{s}$
$\mathrm{S}=0.05 \mathrm{~m}$
$C=300 / \mathrm{hr}$

Formulas and calculation

$$
\begin{aligned}
& E_{K}=\frac{m v^{2}}{2}=\frac{300 \times 1.0^{2}}{2}=150 \mathrm{Nm} \\
& E_{T}=E_{K}=150 \mathrm{Nm} \\
& E_{T C}=E_{T} \times C=150 \times 300=45000 \mathrm{Nm} / \mathrm{hr} \\
& M_{e}=\frac{2 E_{T}}{V^{2}}=\frac{2 \times 1.5}{1.0^{2}}=300 \mathrm{~kg}
\end{aligned}
$$

Choose from calculation: MAD-3650 is adequate.

Example 2. Horizontal impact with propelling force

Choose from calculation: MAD-4250 is adequate.

MAC / MAD sizing formulas \& Examples

SHOCK ABSORBERS

Example 3. Free fall impact
Application data
$\mathrm{m}=40 \mathrm{~kg}$
$\mathrm{h}=0.4 \mathrm{~m}$
$\mathrm{S}=0.06 \mathrm{~m}$
$C=200 / \mathrm{hr}$
rmulas and calculation

$$
\begin{aligned}
& v=\sqrt{2 \mathrm{~g} \times \mathrm{h}}=\sqrt{2 \times 9.81 \times 0.4}=2.8 \mathrm{~m} / \mathrm{sec} \\
& \mathrm{E}_{\mathrm{K}}=\frac{m v^{2}}{2}=\frac{40 \times 2.8^{2}}{2}=157 \mathrm{Nm} \\
& \mathrm{E}_{\mathrm{D}}=\mathrm{F} \times \mathrm{S}=40 \times 9.81 \times 0.06=23.5 \mathrm{Nm} \\
& \mathrm{E}_{T}=\mathrm{E}_{\mathrm{K}}+\mathrm{E}_{\mathrm{D}}=157+23.5=180.5 \mathrm{Nm} \\
& \mathrm{E}_{\mathrm{TC}}=\mathrm{E}_{T} \times \mathrm{C}=180.5 \times 200=36100 \mathrm{Nm} / \mathrm{hr} \\
& M_{e}=\frac{2 \mathrm{E}_{T}}{\mathrm{~V}^{2}}=\frac{2 \times 180.5}{2.8^{2}}=46 \mathrm{~kg}
\end{aligned}
$$

Choose from calculation: MAC-3660-1 is adequate.

Example 4. Free fall impact with propelling

```
Application data
m}=40\textrm{kg
h = 0.3 m
S = 0.025 m
P}=5\mathrm{ bar
d = 50 mm
C=200 /hr
v = 1.0 m/sec
```

Formulas and calculation

$$
\begin{aligned}
\mathrm{E}_{\mathrm{K}} & =\frac{m v^{2}}{2}=\frac{40 \times 1.0^{2}}{2}=20 \mathrm{Nm} \\
\mathrm{E}_{\mathrm{D}} & =\mathrm{F} \times \mathrm{S}=\left(\mathrm{mg}+0.0785 \mathrm{Pd}^{2}\right) \times \mathrm{S} \\
& =\left(40 \times 9.81+0.0785 \times 5 \times 50^{2}\right) \times 0.025=34.3 \mathrm{Nm} \\
E_{T} & =E_{K}+E_{D}=20+34.3=54.3 \mathrm{Nm} \\
E_{T C} & =E_{T} \times C=54.3 \times 200=10860 \mathrm{Nm} / \mathrm{hr} \\
M_{e} & =\frac{2 E_{T}}{V^{2}}=\frac{2 \times 54.3}{1.0^{2}}=108.6 \mathrm{~kg}
\end{aligned}
$$

Choose from calculation: MAD-2525 is adequate.

Example 5. Horizontal impact with motor driving

Application data

$\mathrm{m}=400 \mathrm{~kg}$
$\mathrm{v}=1.0 \mathrm{~m} / \mathrm{s}$
$\mathrm{W}=1.5 \mathrm{~kW}$
$\mathrm{HM}=2.5$
$\mathrm{S}=0.075 \mathrm{~m}$
$C=60 / \mathrm{hr}$

Formulas and calculation

$$
\begin{aligned}
& E_{K}=\frac{m v^{2}}{2}=\frac{300 \times 1.0^{2}}{2}=150 \mathrm{Nm} \\
& E_{D}=F \times S=\frac{\mathrm{kW} \times \mathrm{HM}}{v} \times S=\frac{1500 \times 2.5}{1.0} \times 0.075=281 \mathrm{Nm} \\
& E_{T}=E_{K}+E_{D}=200+281=481 \mathrm{Nm} \\
& E_{T C}=E_{T} \times C=481 \times 60=25860 \mathrm{Nm} / \mathrm{hr} \\
& M_{e}=\frac{2 E_{T}}{V^{2}}=\frac{2 \times 481}{1.0^{2}}=962 \mathrm{~kg}
\end{aligned}
$$

Choose from calculation: MAD-4275 is adequate.

Example 6. Inclined impact

Formulas and calculation

$$
\begin{aligned}
v & =\sqrt{2 g \times h}=\sqrt{2 \times 9.81 \times 0.3}=2.43 \mathrm{~m} / \mathrm{sec} \\
\mathrm{E}_{\mathrm{K}} & =\frac{m v^{2}}{2}=\frac{150 \times 2.43^{2}}{2}=443 \mathrm{Nm} \\
\mathrm{E}_{\mathrm{D}} & =\mathrm{F} \times \mathrm{S}=\mathrm{m} \times \mathrm{g} \times \mathrm{S} \times \operatorname{sin\alpha } \\
& =50 \times 9.81 \times 0.075 \times \sin 30^{\circ}=55.2 \mathrm{Nm} \\
\mathrm{E}_{T} & =\mathrm{E}_{\mathrm{K}}+\mathrm{E}_{\mathrm{D}}=433+55.2=498.2 \mathrm{Nm} \\
\mathrm{E}_{\mathrm{TC}} & =\mathrm{E}_{\mathrm{T}} \times \mathrm{C}=498.2 \times 200=99640 \mathrm{Nm} / \mathrm{hr} \\
M_{e} & =\frac{2 E_{T}}{V^{2}}=\frac{2 \times 498.2}{2.43^{2}}=168.7 \mathrm{~kg}
\end{aligned}
$$

Choose from calculation: MAD-4275 is adequate.

MAC / MAD sizing formulas \& Examples

SHOCK ABSORBERS

Example 7. Horizontal rotating door

		$m\left(4 A^{2}+B^{2}\right)$		$20\left(4 \times 1.0^{2}+0.05^{2}\right)$	$=6.67 \mathrm{~kg} \mathrm{~m}^{2}$
		12		12	
$\mathrm{E}_{\text {к }}$	=	$\frac{1 \omega^{2}}{2}$	=	$\frac{6.67 \times 2.0^{2}}{2}$	$=13.34 \mathrm{Nm}$
θ	=	$\frac{\mathrm{s}}{\mathrm{R}_{\mathrm{s}}}$	=	$\frac{0.04}{0.8}$	$=0.05 \mathrm{rad}$
E	=	$\mathrm{T} \times \theta$	=	20×0.05	$=1.0 \mathrm{Nm}$
$\mathrm{E}_{\text {T }}$	=	$E_{\kappa}+\mathrm{E}_{\text {d }}$	=	$13.34+1.0$	$=14.34 \mathrm{Nm}$
$\mathrm{E}_{\text {Tc }}$	=	$\mathrm{E}_{\mathrm{T}} \times \mathrm{C}$	=	14.34×100	$=1434 \mathrm{Nm} / \mathrm{h}$
v	=	$\omega \times \mathrm{R}_{\mathrm{s}}$	=	2.0×0.8	$=1.6 \mathrm{~m} / \mathrm{s}$
Me	$=$	$\frac{2 \mathrm{E}_{T}}{\mathrm{~V}^{2}}$	=	$\frac{2 \times 14.34}{1.6^{2}}$	$=11.20 \mathrm{~kg}$

Choose from calculation: MAD-2016 is adequate.

Example 8. Rotary index table with propelling force

Choose from calculation: MAD-2540 is adequate.

Example 9. Horizontal mass on driven rollers

Formulas and calculation

$$
\begin{aligned}
& E_{K}=\frac{m v^{2}}{2}=\frac{150 \times 0.5^{2}}{2}=18.75 \mathrm{Nm} \\
& E_{D}=F \times S=m g \mu \times S=150 \times 9.81 \times 0.25 \times 0.02=7.35 \mathrm{Nm} \\
& E_{T}=E_{K}+E_{D}=18.73+7.35=26.1 \mathrm{Nm} \\
& E_{T C}=E_{T} \times C=26.1 \times 120=3132 \mathrm{Nm} / \mathrm{hr} \\
& M_{e}=\frac{2 E_{T}}{V^{2}}=\frac{2 \times 26.1}{0.5^{2}}=208.8 \mathrm{~kg}
\end{aligned}
$$

Choose from calculation: MAC-2020-3 is adequate.

Example 10. Rotating beam with driving force
Application data
$\mathrm{m}=40 \mathrm{~kg}$
$\mathrm{~A}=0.5 \mathrm{~m}$
$\mathrm{~B}=0.05 \mathrm{~m}$
$\omega=2.0 \mathrm{rad} / \mathrm{s}$
$\mathrm{T}=10 \mathrm{Nm}$
$\mathrm{R}_{\mathrm{S}}=0.4 \mathrm{~m}$
$\mathrm{~S}=0.05 \mathrm{~m}$
$\mathrm{C}=50 / \mathrm{hr}$

Formulas and calculation

I		$\underline{m\left(4 A^{2}+B^{2}\right)}$		$40\left(4 \times 0.5^{2}+0.05^{2}\right)$	$=3.34 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
		12		12	= $3.34 \mathrm{kg.m}$
E_{K}	$=$	$\frac{\mid \omega^{2}}{2}$	=	$\frac{3.34 \times 2.0^{2}}{2}$	$=6.7 \mathrm{Nm}$
θ	$=$	$\frac{\mathrm{s}}{\mathrm{R}_{\mathrm{s}}}$	$=$	$\frac{0.05}{0.4}$	$=0.125 \mathrm{rad}$
Ed	$=$	$\mathrm{T} \times \theta$	$=$	10×0.125	$=1.25 \mathrm{Nm}$
E_{T}	$=$	$\mathrm{E}_{K}+\mathrm{E}_{\text {d }}$	=	$6.7+1.25$	$=8 \mathrm{Nm}$
$\mathrm{E}_{\text {TC }}$	$=$	$E_{T} \times C$	$=$	8×50	$=400 \mathrm{Nm} / \mathrm{hr}$
v	=	$\omega \times \mathrm{R}_{\text {s }}$	=	2.0×0.4	$=0.8 \mathrm{~m} / \mathrm{s}$
Me	=	$\frac{2 \mathrm{E}_{T}}{\mathrm{~V}^{2}}$	$=$	$\frac{2 \times 8.05}{0.8^{2}}$	$=25 \mathrm{~kg}$

Choose from calculation: MAD-1416-2 is adequate.

