MAC / MAD Sizing formulas & Examples

SHOCK ABSORBERS

Four parameters are required to precisely determine the dimension of shock absorbers

- Mass to be decelerated m (kg)
- Impact velocity v (m/s)
- Propelling or driving force F (N)
- Number of impact cycles per hour C (/hr)

Some useful calculation formulas

- Kinetic energy: $E_{K} = mv^{2}/2$
- Drive energy: $E_D = F \times S$
- Free fall velocity: $v = \sqrt{2g \times h}$
- Pneumatic or hydraulic cylinder driving forces. F = 0.00785 Pd^2
- Maximum shock force (approximate). Fm = $1.2 E_T/S$
- Propelling force generated by electric motors. F = 3000 kW/v
- Total energy absorbed per hour. $E_{TC} = E_T \times C$

Example 1. Horizontal impact

Symbols	Unit	Description		
μ		Coefficient of friction		
α	(rad)	Angle of incline		
θ	(rad)	Side load angle		
ω	(rad/s)	Angular velocity		
А	(m)	Width		
В	(m)	Thickness		
С	(/hr)	Impact cycles per hour		
d	(mm)	Cylinder bore diameter		
ED	(Nm)	Drive energy per cycle		
Eκ	(Nm)	Kinetic energy per cycle		
Eτ	(Nm)	Total energy per cycle		
Етс	(Nm)	Total energy per hour		
F	(N)	Propelling force		
Fm	(N)	Maximum shock force		
g	(m/s ²)	Acceleration due to gravity (9.81 m/s)		
h	(m)	Height		
HM		Arresting torque factor for motors (normally 2.5)		
kW	(kW)	Electric motor power		
m	(kg)	Mass to be decelerated		
Me	(kg)	Effective mass		
Р	(bar)	Operation pressure		
R	(m)	Radius		
Rs	(m)	Shock absorber mounting distance from rotation center		
S	(m)	Stroke		
Т	(Nm)	Driving torque		
t	(S)	Deceleration time		
V	(m/s)	Velocity of impact mass		
Vs	(m/s)	Impact velocity at shock absorber		

Example 2. Horizontal impact with propelling force

MAC / MAD Sizing formulas & Examples

SHOCK ABSORBERS

Example 3. Free fall impact

Example 4. Free fall impact with propelling

Example 6. Inclined impact

Example 5. Horizontal impact with motor driving

MAC / MAD Sizing formulas & Examples

SHOCK ABSORBERS

	2 de 19			0			
Application data m = 20 kg $\omega = 2.0 \text{ rad/s}$ T = 20 Nm $R_s = 0.8 \text{ m}$ A = 1.0 m B = 0.05 m S = 0.016 m C = 100 / hr Formulas and calculation							
I	=	$\frac{\mathrm{m}(4\mathrm{A}^2\mathrm{+B}^2)}{12}$	=	$\frac{20(4 \times 1.0^2 + 0.05^2)}{12}$	= 6.67 kg.m ²		
Eκ	=	$\frac{1\omega^2}{2}$	=	$\frac{6.67 \times 2.0^2}{2}$	= 13.34 Nm		
θ	=	s Rs	=	$\frac{0.04}{0.8}$	= 0.05 rad		
ED	=	T×θ	=	20 × 0.05	= 1.0 Nm		
Eτ	=	E _K +E _D	=	13.34+1.0	= 14.34 Nm		
Етс	=	E⊤ × C	=	14.34 × 100	= 1434 Nm/hr		
v	=	$\omega \times R_s$	=	2.0 × 0.8	= 1.6 m/s		
Me	=	$\frac{2E_T}{V^2}$	=	$\frac{2 \times 14.34}{1.6^2}$	= 11.20 kg		
Choose from calculation: MAD-2016 is adequate.							

Example 7. Horizontal rotating door

Example 8. Rotary index table with propelling force

Application data						
Formulas and calculation						
$E_{\kappa} = \frac{mv^2}{2} = \frac{150 \times 0.5}{2}$	⁵² = 18.75 Nm					
E _D = F × S = mgµ × S = 150 × 9.81 × 0.25 × 0.02 = 7.35 Nm						
$E_{T} = E_{K} + E_{D} = 18.73 + 7.3$	35 = 26.1 Nm					
$E_{TC} = E_T \times C = 26.1 \times 12$	0 = 3132 Nm/hr					
$M_e = \frac{2E_T}{V^2} = \frac{2 \times 26.1}{0.5^2}$	- = 208.8 kg					
Choose from calculation: MAC-2020-3 is adequate.						

Example 10. Rotating beam with driving force

Example 9. Horizontal mass on driven rollers

