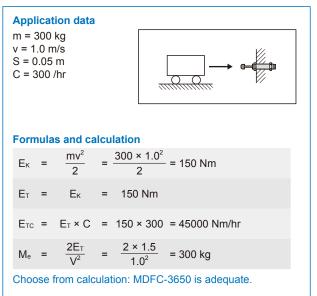
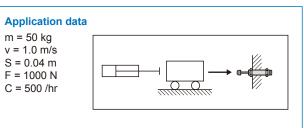
MDSC / MDFC Sizing formulas & Examples

SHOCK ABSORBER


Four parameters are required to precisely determine the dimension of shock absorbers

- Mass to be decelerated m (kg)
- Impact velocity v (m/s)
- Propelling or driving force F (N)
- Number of impact cycles per hour C (/hr)

Some useful calculation formulas

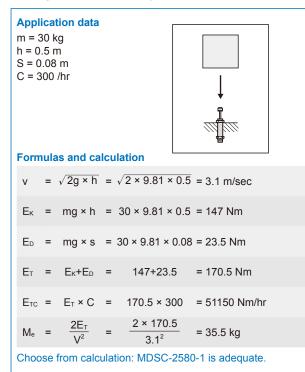

- Kinetic energy: $E_{K} = mv^{2}/2$
- Drive energy: $E_D = F \times S$
- Free fall velocity: $v = \sqrt{2g \times h}$
- Pneumatic or hydraulic cylinder driving forces. F = 0.00785 Pd^2
- Maximum shock force (approximate). Fm = $1.2 E_T/S$
- Propelling force generated by electric motors. F = 3000 kW/v
- Total energy absorbed per hour.
- $E_{TC} = E_T \times C$

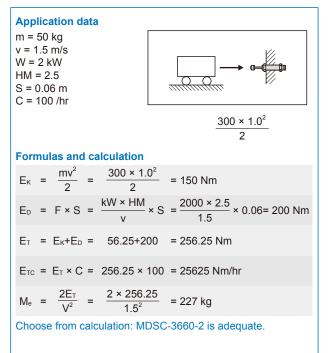
Example 1. Horizontal impact

Symbols	Unit	Description
μ		Coefficient of friction
α	(rad)	Angle of incline
θ	(rad)	Side load angle
ω	(rad/s)	Angular velocity
Α	(m)	Width
В	(m)	Thickness
С	(/hr)	Impact cycles per hour
d	(mm)	Cylinder bore diameter
ED	(Nm)	Drive energy per cycle
Ек	(Nm)	Kinetic energy per cycle
Ет	(Nm)	Total energy per cycle
Етс	(Nm)	Total energy per hour
F	(N)	Propelling force
Fm	(N)	Maximum shock force
g	(m/s ²)	Acceleration due to gravity (9.81 m/s)
h	(m)	Height
HM		Arresting torque factor for motors (normally 2.5)
kW	(kW)	Electric motor power
m	(kg)	Mass to be decelerated
Me	(kg)	Effective mass
Р	(bar)	Operation pressure
R	(m)	Radius
Rs	(m)	Shock absorber mounting distance from rotation center
S	(m)	Stroke
Т	(Nm)	Driving torque
t	(S)	Deceleration time
V	(m/s)	Velocity of impact mass
Vs	(m/s)	Impact velocity at shock absorber

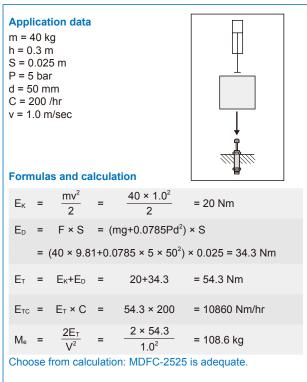
Example 2. Horizontal impact with propelling force

Formulas and calculation

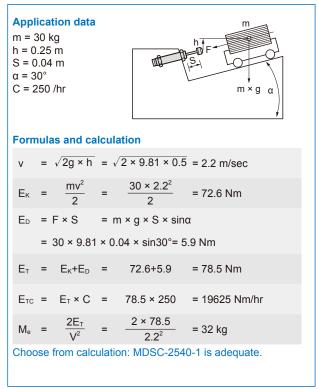

	Εк	=	$\frac{mv^2}{2}$	=	$\frac{50 \times 1.0^2}{2}$	= 25 Nm
	E⊳	=	F×S	=	1000 × 0.04	= 40 Nm
	Εт	=	E _K +E _D	=	25+40	= 65 Nm
	Етс	=	E⊤ × C	=	65 × 500	= 32500 Nm/hr
	Me	=	$\frac{2E_T}{V^2}$	=	$\frac{2 \times 65}{1.0^2}$	= 130 kg
(Choo	se fi	rom calcu	lat	ion: MDFC-2	2540 is adequate.


MDSC / MDFC Sizing formulas & Examples

SHOCK ABSORBER



Example 3. Free fall impact



Example 4. Free fall impact with propelling

Example 6. Inclined impact

Example 5. Horizontal impact with motor driving

MDSC / MDFC Sizing formulas & Examples

SHOCK ABSORBER

Example 7. Horizontal rotating door Т **Application data** m = 20 kg $\omega = 2.0 \text{ rad/s}$ T = 20 Nm Rs= 0.8 m A = 1.0 m B = 0.05 m S = 0.016 m C = 100 /hr Formulas and calculation $m(4A^2+B^2) =$ $20(4 \times 1.0^{2} + 0.05^{2})$ $= 6.67 \text{ kg} \cdot \text{m}^2$ Т 12 12 $\mathsf{I}\omega^2$ 6.67×2.0^2 = 13.34 Nm Еκ --2 2 s 0.04 = 0.05 rad θ = = 0.8 Rs ΕD = T×θ = 20 × 0.05 = 1.0 Nm = 14.34 Nm 13.34+1.0 Εт E_K+E_D = = 14.34 × 100 = 1434 Nm/hr E_{TC} = E⊤ × C = v = $\omega \times R_s$ = 2.0 × 0.8 = 1.6 m/s 2E_T 2 × 14.34 M_{e} = 11.20 kg = = V^2 1.6² Choose from calculation: MDFC-2016 is adequate.


Example 8. Rotary index table with propelling force

Example o. Rotary index table with propening to					
m = 2 $\omega = 7$ T = 1 R = 0 $R_s = 0$ S = 0 C = 1	200 kg 00 Ni 0.5 m 0.4 m 0.04 m	d/s m n r	_		
Forn	nulas	and calc	ulatio	n	
I.	=	$\frac{mR^2}{2}$	=	$\frac{200 \times 0.5^2}{2}$	= 25 kg•m ²
Eκ	=	$\frac{ \omega^2 }{2}$	=	$\frac{25 \times 1.0^2}{2}$	= 12.5 Nm
θ	=	s Rs	=	<u>0.04</u> 0.4	= 0.1 rad
ED	=	T×θ	=	100 × 0.1	= 10 Nm
Ет	=	E _K +E _D	=	12.5+10	= 22.5 Nm
Ε _{τc}	=	E⊤ × C	=	22.5 × 50	= 1125 Nm/hr
v	=	ω×Rs	=	1.0 × 0.4	= 0.4 m/s
Me	=	$\frac{2E_T}{V^2}$	=	$\frac{2 \times 22.5}{0.4^2}$	= 281 kg
Choose from calculation: MDFC-2540 is adequate.					

Example 9. Horizontal mass on driven rollers

Application data m = 150 kg v = 0.5 m/s $\mu = 0.25$ S = 0.02 m C = 120 / hr						
Formulas and calculation						
$E_{K} = \frac{mv^2}{2} = \frac{150 \times 100}{2}$	$\frac{0.5^2}{1000}$ = 18.75 Nm					
$E_D = F \times S = mg\mu \times S =$	150 × 9.81 × 0.25 × 0.02 = 7.35 Nm					
$E_{T} = E_{K} + E_{D} = 18.73 +$	+7.35 = 26.1 Nm					
$E_{TC} = E_T \times C = 26.1 \times C$: 120 = 3132 Nm/hr					
$M_{e} = \frac{2E_{T}}{V^{2}} = \frac{2 \times 2}{0.5}$	$\frac{26.1}{5^2}$ = 208.8 kg					
Choose from calculation: MDSC-2020-3 is adequate.						

